Parameter Sensitivity
You can use the Analysis > Normalized Parameter Sensitivity menu option to check the influence of parameters on function nodes.
ASCMO-MOCA calculates the gradients G of a node regarding the parameters for all parameters pj for all training data points xi:
with
- F - the optimization function to be minimized
- x - training data
- p - parameter
The gradient is normalized to the range of the parameter:
with
- uj - upper limit of parameter pj
- lj - lower limit of parameter pj
The results are displayed in the
- dark gray area: maximum gradient regarding one parameter pj over all training data points
- red line: mean gradient regarding one parameter pj over all training data points
- light gray area: mean gradient ± 1 σ regarding one parameter pj over all training data points
Note |
---|
Smaller values indicate less influence of the parameters on a node. |
See also
Normalized Parameter Sensitivity