Parameter Sensitivity

You can use the Analysis > Normalized Parameter Sensitivity menu option to check the influence of parameters on function nodes.

ASCMO-MOCA calculates the gradients G of a node regarding the parameters for all parameters pj for all training data points xi:

with

  • F - the optimization function to be minimized
  • x - training data
  • p - parameter

The gradient is normalized to the range of the parameter:

with

  • uj - upper limit of parameter pj
  • lj - lower limit of parameter pj

The results are displayed in the "Normalized Parameter Sensitivity" window as follows:

  • dark gray area: maximum gradient regarding one parameter pj over all training data points
  • red line: mean gradient regarding one parameter pj over all training data points
  • light gray area: mean gradient ± 1 σ regarding one parameter pj over all training data points

Note  

Smaller values indicate less influence of the parameters on a node.

See also

Normalized Parameter Sensitivity